adicional del aire de entrada.

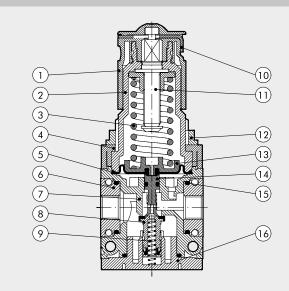
REGULADOR SUNTESI.

El regulador de presión Syntesi se basa en el principio de diafragma rodante, que ofrece numerosas ventajas frente al uso de un diafragma plano:

- Incremento en la carrera, permitiendo una apertura de la válvula más amplia y por lo tanto más flujo.
- Decrecimiento en la fricción tanto dinámica como de pick-up, por lo tanto repuesta más rápida y sensibilidad mejorada.
- Mayor precisión en mantener la presión establecida, tanto con flujos variables como con presiones suministradas variables.

El regulador incluye un sistema de compensación que mantiene la presión establecida virtualmente constante, incluso cuando la presión aguas arriba cambia. Esto se consigue principalmente por el diseño de la válvula, que está neumáticamente equilibrada.

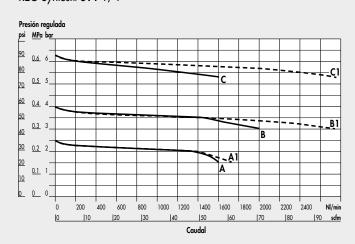
Si la presión aguas abajo se eleva por encima del valor umbral, el aire es descargado (válvula de descarga) hasta que cae por debajo del valor máximo. Un dispositivo especial mitiga la presión aguas abajo rápidamente cuando la presión aguas arriba cae a 0. Esto significa que el regulador puede ponerse en medio de una válvula y un cilindro porqué el aire puede ir en ambas direcciones, a través del cilindro con presión regulada, o volver a través de la válvula durante la descarga. El pomo es de tipo push-lock – una vez la presión ha sido establecida, púlsalo y bloqueará la posición. En esta posición puedes extraer el disco y añadir 2 candados en tamaño 1 o 3 candados en tamaño 2 con la finalidad de evitar posibles manipulaciones. En la parte delantera y trasera hay un puerto (1/8" para tamaño 1 y 1/4" para tamaño 2) que puede ser usado como calibrado de presión, presostato o como filtro



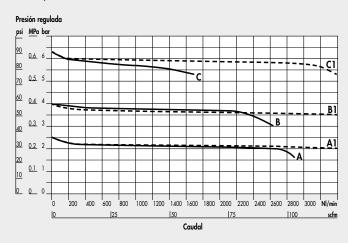
DATOS TÉCNICOS			REG SY1			REG	SY2	
Acoplamiento roscado		1/8″	1/4"	3/8″	3/8″	1/2"	3/4"	1″
Presión max. de entrada	bar		15	'		1	3	
	MPa		1.5			1	.3	
	psi		217			18	88	
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)	NI/min	570	1600	2900	3000	4300	470)
presión de alimentación 10 bar)	scfm	20	57	103	106	152	166)
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	NI/min	1200	2800	3350	5300	7400	760)
presión de alimentación 10 bar)	scfm	42	99	119	188	261	267	,
Caudal en descarga del relieving, a 6.3 bar (0.63 MPa; 91 psi)	NI/min		70			10	00	
	scfm		2.5			3	.5	
Temperatura mín/máx a 10 bar; 1 MPa; 145 psi	°C		-10 ÷ +50			-10 -	÷ +50	
Pleno paso en descarga poniendo a cero la presión de entrada					Incluido			
Pomo bloqueable					Incluida			
Compensación de la presión de entrada				Incluida, me	diante válvulo	a equilibrada		
Peso	g	193	188	179	546	519	515	503
-luido				Aire compri	mido u otros	gases inertes		
Posición de montaje					cualquier posi			
Tomas de aire adicionales, para manómetro o racores		1/	8", anterior y	posterior		1/4", anter	ior y posterior	
Caudal de las tomas de aire adicionales a 6.3 bar	NI/min		500				1400	
0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	scfm		18				50	
Tornillos de fijación a pared		١	lúmero 2 torn	illos M4		Número	2 tornillos M5	
Notas de uso			La pre	esión siempre	tiene que pro	gramarse en s	ubida.	
		Para obt	ener una may	or sensibilidad	d en la regula	ción, utilizar e	l regulador con	presión
						a la presión de		
			Bajo	pedido, versio	ón sin descarç	ga de sobrepre	esión.	
					Ì	· '		

COMPONENTES

- 1) Pomo technopolimero ajustable
- ② Campana de tecnopolímero
- 3 Muelle de acero ajustable (con tratamiento Geomet® para la versión anticorrosion)
- Pestaña technopolimera
- (5) Diafragma rodante
- ENT/SAL terminal fabricado en OT58 latón niquelado o aluminio pasivado para 3/4" 1"
- Cuerpo regulador technopolimero Válvula en latón OT 58 con junta vulcanizada en NBR
- Muelle prensaválvula en acero inox
- Disco de acero galvanizado para fijación del pomo (de acero inoxidable para versión anticorrosión)
- Tornillos registro en latón OT 58
- Tuerca de fijación en tecnopolímero
- Disco technopolimero
- Varilla en tecnopolímero (14)
- Juntas OR en NBR (15)
- 16 Tapón en tecnopolímero



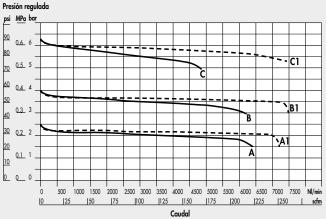
CURVAS DE CAUDAL

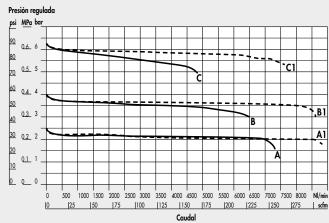

REG Syntesi® SY1 1/8"

Presión regulado <u>70</u> 0.5 5 0.4 4 50 40 0.3 3 0.2 2 20 10 0.1 0 Caudal

REG Syntesi® SY1 1/4"

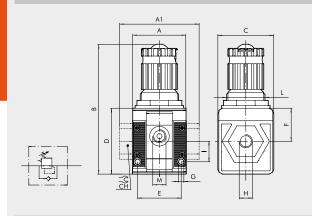
REG Syntesi® SY1 3/8"


REG Syntesi® SY2 3/8"


Pln 7 bar - POut 2.5 bar = Pln 7 bar - POut 4 bar C = P In 7 bar - P Out 6.3 barA1 = P In 10 bar - P Out 2.5 bar

 $B1 = P \ln 10 \text{ bar - } P \text{ Out}$ $C1 = P \ln 10 \text{ bar - } P \text{ Out } 6.3 \text{ bar}$

REG Syntesi® **SY2** 1/2" Presión regulada


REG Syntesi® **SY2** 3/4" - 1"

 $C = P \ln 7 \text{ bar - } P \text{ Out } 6.3 \text{ bar} \\ A1 = P \ln 10 \text{ bar - } P \text{ Out } 2.5 \text{ bar}$

 $B1 = P \ln 10 \text{ bar - } P \text{ Out}$ 4 bar $C1 = P \ln 10 \text{ bar - } P \text{ Out}$ 6.3 bar

DIMENSIONES

	TAMAÑO	1		TAMA	AÑO 2	
H (parte roscada)	1/8" 1/4"	3/8"	3/8″	1/2"	3/4"	1″
A	42			60).5	
A1		44	-	-	95	95
В	102			13	39	
C	44			6	1	
CH	-		-	-	32	36
D	51.5			70).5	
E	33.5			47	7.5	
F	25.8			38	3.2	
G	Agujero para torr	nillos M4	Agu	jero para	a tornillos	M5
1	16			22	2.5	
L	M30x1.5			M3	8x2	
M (conexión manómetro	1/8″			1/	4"	
o toma de aire suplementaria)						

CLAVE DE CODIFICACIÓN

56	1	1	R	14	1
SYNTESI	TAMAÑO	ACOPLAMIENTO ROSCADO EN ENTRADA	ELEMENTO	RANGO DE REGULACIÓN	ACOPLAMIENTO ROSCADO EN SALIDA
56 Syntesi 5X Syntesi anticorrosión	1 Tamaño 1 2 Tamaño 2	 0 Sin casquillo 1 Acoplamiento 1/4" 2 Acoplamiento 3/8" 3 Acoplamiento 3/8" 3 Acoplamiento 3/8" 4 Acoplamiento 1/2" 5 Acoplamiento 3/4" 6 Acoplamiento 1" 	R Regulador	● 10 0 ÷ 2 bar + 12 0 ÷ 4 bar 14 0 ÷ 8 bar 16 0 ÷ 12 bar	O Sin casquillo Acoplamiento 1/8" Acoplamiento 1/4" Acoplamiento 3/8" Sin casquillo Acoplamiento 3/8" Acoplamiento 1/2" Acoplamiento 1/2" Acoplamiento 3/4" Acoplamiento 1/4"

- No está disponible en la versión anticorrosión.
- **★** La versión anticorrosión está disponible sólo en el tamaño 1.

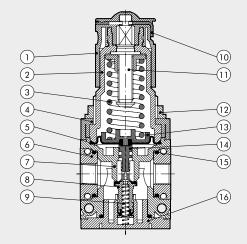
CÓDIGOS DE ÓRDENES MÁS FRECUENTES

N.B.: Además	de los códigos mencionados, puedes pedir ele	ementos a tu volu	ıntad de acuerdo a las claves de codificación.		
Código	Referencia	Código	Referencia	Código	Referencia
REGULADOR	Syntesi _® SY1	REGULADOR	Syntesi _® SY2	REGULADOR	Syntesi _® SY2
5610R140	REG SY1 08 sin terminales	5620R140	REG SY2 08 sin terminales	5626R146	REG SY2 1 08
5610R160	REG SY1 012 sin terminales	5620R160	REG SY2 012 sin terminales	5626R166	REG SY2 1 012
5611R141	REG SY1 1/8 08	5623R143	REG SY2 3/8 08		
5611R161	REG SY1 1/8 012	5623R163	REG SY2 3/8 012	NOTA	
5612R142	REG SY1 1/4 08	5624R144	REG SY2 1/2 08	Versión antico	orrosión
5612R162	REG SY1 1/4 012	5624R164	REG SY2 1/2 012	5X	
5613R143	REG SY1 3/8 08	5625R145	REG SY2 3/4 08	Ejemplo	
5613R163	REG SY1 3/8 012	5625R165	REG SY2 3/4 012	5X11R141	REG SY1 1/8 08 anticorrosión

REGULADOR EN BATERIA SUNTESI.

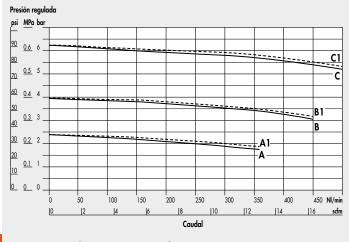
El regulador en batería se utiliza para tomar aire a la presión establecida de los puertos delanteros y traseros del cuerpo, mientras que los puertos de entrada y salida neumáticos se conectan directamente.

Es posible por ejemplo ensamblar varios reguladores uno junto a otro, todos suministrados a la misma presión, y obtener diferentes presiones reguladas, a pesar de la presión del módulo previo.


El regulador en batería utiliza los mismos principios de construcción que los reguladores estándar, por lo que las ventajas son las mismas, tales como compensación para cambios de presión aguas arriba, válvula de descarga, descarga rápida de la presión aguas abajo y un pomo push-lock bloqueable.

DATOS TÉCNICOS		RE	G BATTERIA	SY1		REG BATT	ERIA SY2	
Acoplamiento roscado entrada, pasante		1/8"	1/4"	3/8″	3/8″	1/2"	3/4"	1"
Acoplamiento roscado de uso			1/8″			1/	4"	
Presión máx. entrada	bar		15			1;	3	
	MPa		1.5			1.	3	
	psi		217			18	8	
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)	NI/min		330			54	.0	
	scfm		12			19	9	
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	NI/min		500			100	00	
	scfm		18			3.	5	
Caudal in scarico del relieving, a 6.3 bar (0.63 MPa; 91 psi)	NI/min		70			10		
	scfm		2.5			3.	5	
Temperatura mín/máx a 10 bar; 1 MPa; 145 psi	°C		-10 ÷ +50			-10 ÷	+50	
Pleno paso en descarga poniendo a cero la presión de entrada					Incluido			
Pomo bloqueable					Incluida			
Compensación de la presión de entrada				Incluida, m	ediante válvula e			
Peso	g	193	188	179	546	519	515	503
Fluido					rimido u otros ga			
Posición de montaje					cualquier posici			
Tornillos de fijación a pared			Número 2 torni	illos M4	1	Número 2 tornill	os M5	
Notas de uso				a presión siempre				
				ara obtener una r				
		uti		or con presión de				la.
				Bajo pedido, vers	ión sin descarga	de sobrepresión		

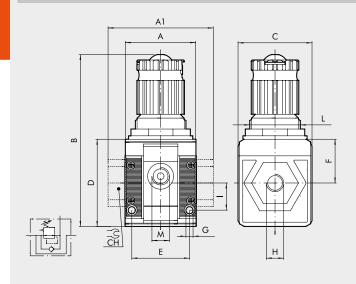
COMPONENTES

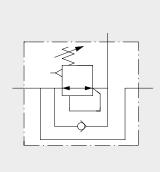

- 1) Pomo technopolimero ajustable
- ② Campana de tecnopolímero
- 3 Muelle de acero ajustable (con tratamiento Geomet® para la versión anticorrosion)
- Pestaña technopolimera
- Diafragma rodante
 ENT/SAL terminal fabricado en OT58 latón niquelado o aluminio pasivado para 3/4" - 1"
- 7 Cuerpo regulador technopolimero
- 8 Válvula en latón OT 58 con junta vulcanizada en NBR
- Muelle prensaválvula en acero inox
- Disco de acero galvanizado para fijación del pomo (de acero inoxidable para versión anticorrosión).
- Tornillos registro en latón OT 58 Tuerca de fijación en tecnopolímero
- 13 Disco technopolimero
- Varilla en tecnopolímero
- Juntas OR en NBR
- 16 Tapón en tecnopolímero

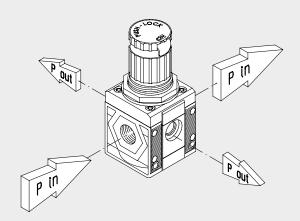


CURVAS DE CAUDAL

Regulador IN-SERIES Syntesi® SY1 1/4"-1/8"-3/8"


Regulador IN-SERIES Syntesi® **SY2** 3/8" - 1/2" - 3/4" - 1"


A = P In 7 bar - P Out 2.5 bar<math>B = P In 7 bar - P Out 4 bar<math>C = P In 7 bar - P Out 6.3 bar $A1 = P \ln 10 \text{ bar - } P \text{ Out } 2.5 \text{ bar } B1 = P \ln 10 \text{ bar - } P \text{ Out } 4 \text{ bar } C1 = P \ln 10 \text{ bar - } P \text{ Out } 6.3 \text{ bar }$


DIMENSIONES

	T	amaño	1		TAM/	AÑO 2	
H (parte roscada)	1/8″	1/4"	3/8"	3/8"	1/2"	3/4"	1″
A		42			60	0.5	
A1	-	-	44	-	-	95	95
В		102			1	39	
С		44			ć	51	
CH		-		-	-	32	36
D		51.5			70	0.5	
E		33.5			47	7.5	
F		25.8			38	8.2	
G	Agujero	para torr	nillos M4	Agu	jero para	a tornillos	M5
1		16			22	2.5	
L		M30x1.5	5		M3	8x2	
M (utilización)		1/8"			1/	'4 "	

DIAGRAMA DE FUNCIONES

CLAVE DE CODIFICACIÓN

56 SYNTESI	1 TAMAÑO	1 Acoplamiento Roscado en entrada	R ELEMENTO	24 Rango de regulación Regulador en Bateria	1 Acoplamiento Roscado en Salida
56 Syntesi 5X Syntesi anticorrosión	1 Tamaño 1 2 Tamaño 2	O Sin casquillo 1 Acoplamiento 1/8" 2 Acoplamiento 1/4" 3 Acoplamiento 3/8" O Sin casquillo 3 Acoplamiento 3/8" 4 Acoplamiento 1/2" 5 Acoplamiento 3/4" 6 Acoplamiento 1"	R Regulador	● 20 0 ÷ 2 bar + 22 0 ÷ 4 bar 24 0 ÷ 8 bar 26 0 ÷ 12 bar	 0 Sin casquillo 1 Acoplamiento 1/8" 2 Acoplamiento 1/4" 3 Acoplamiento 3/8" 0 Sin casquillo 3 Acoplamiento 3/8" 4 Acoplamiento 1/2" 5 Acoplamiento 3/4" 6 Acoplamiento 1"

- No está disponible en la versión anticorrosión.
- **◆** La versión anticorrosión está disponible sólo en el tamaño 1.

CÓDIGOS DE ÓRDENES MÁS FRECUENTES

N.B.: Además	de los códigos mencionados, puedes pedir ele	ementos a tu volu	ntad de acuerdo a las claves de codificación.		
Código	Referencia	Código	Referencia	NOTA	
REGULADOR E	EN BATERIA Syntesi _® SY1	REGULADOR	EN BATERIA Syntesi _® SY2	Versión antico	orrosión
5610R240	In-series REG SY1 08 sin terminales	5620R240	In-series REG SY2 08 sin terminales	5X	
5610R260	In-series REG SY1 012 sin terminales	5620R260	In-series REG SY2 012 sin terminales	Ejemplo	
				5X11R241	In-series REG SY1 1/8 08 anticorrosión
5611R241	In-series REG SY1 1/8 08	5623R243	In-series REG SY2 3/8 08		
5611R261	In-series REG SY1 1/8 012	5623R263	In-series REG SY2 3/8 012		
5612R242	In-series REG SY1 1/4 08	5624R244	In-series REG SY2 1/2 08		
5612R262	In-series REG SY1 1/4 012	5624R264	In-series REG SY2 1/2 012		
5613R243	In-series REG SY1 3/8 08	5625R245	In-series REG SY2 3/4 08		
5613R263	In-series REG SY1 3/8 012	5625R265	In-series REG SY2 3/4 012		
		5626R246	In-series REG SY2 1 08		
		5626R266	In-series REG SY2 1 012		

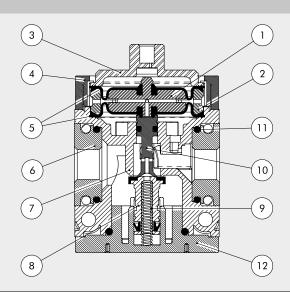
NOTAS

REGULADOR PILOTABLE SUNTESI.

El regulador pilotado puede ajustar la presión de forma remota a través de un comando neumático.

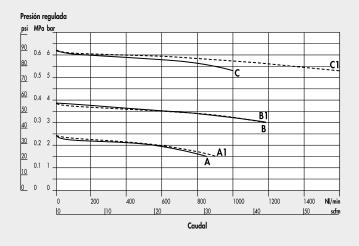
Los dos diafragmas rodantes ofrecen varias ventajas:

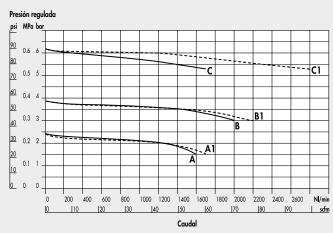
- carrera aumentada, que permite una mayor apertura de la válvula y, por lo tanto, un mayor caudal;
- disminución de la fricción dinámica y de arranque, en consecuencia la velocidad de respuesta y la sensibilidad aumentan;
- alta precisión en el mantenimiento de la presión establecida, tanto con caudales variables como con diferentes presiones de entrada.


El diseño presenta las mismas características de construcción que las utilizadas para un regulador estándar, por lo que las ventajas son las mismas, a saber: la compensación de la presión regulada varía con la presión de entrada; presencia de una válvula de alivio y descarga rápida de presión de retorno.

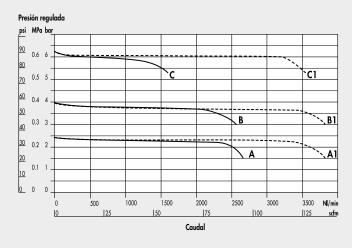
DATOS TÉCNICOS			REG SY1			REG	SY2	
DAIOS ILCINICOS			KLO 311			KLO	312	
Acoplamiento roscado		1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1"
Presión max. de entrada	bar		15			1	3	
	MPa		1.5			1.	.3	
	psi		217			18	38	
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 0.5 bar (0.05 MPa; 7 psi)	NI/min	900	1700	3300	5500	5500	73	300
(presión de alimentación 10 bar)	scfm	32	60	116	194	194	2	58
Caudal a 6.3 bar (0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)	NI/min	1000	2800	3550	6800	6800	77	700
(presión de alimentación 10 bar)	scfm	53	99	120	240	240	2	72
Caudal en descarga del relieving, a 6.3 bar (0.63 MPa; 91 psi)	NI/min		70			10	00	
	scfm		2.5			3.	.5	
Temperatura mín/máx a 10 bar; 1 MPa; 145 psi	°C		-10 ÷ +50			-10 ÷	+50	
Pleno paso en descarga poniendo a cero la presión de entrada					Incluido			
Compensación de la presión de entrada				Incluida, m	ediante válvula e	equilibrada		
Peso	g	149	144	135	456	429	425	413
Fluido				Aire comp	rimido u otros go	ases inertes		
Posición de montaje				En	cualquier posici	ón		
Tomas de aire adicionales, para manómetro o racores		1/8	", anterior y post			1/4", anterio	or y posterior	
Caudal de las tomas de aire adicionales a 6.3 bar			500			14	00	
(0.63 MPa; 91 psi) ΔP 1 bar (0.1 MPa; 14 psi)			18			5	0	
Tornillos de fijación a pared		Νί	úmero 2 tornillos I	M4		Número 2 t	ornillos M5	
Notas de uso			La	presión siempre	e tiene que progi	ramarse en subic	da	

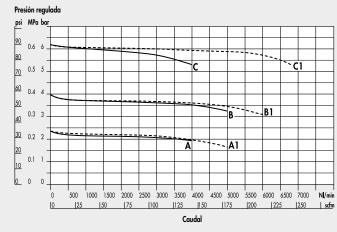
COMPONENTI

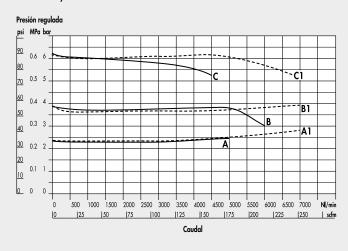

- ① Disco de aluminio anodizado
- 2 Anillo premimembrana en aluminio anodizado
- ③ Clavija tope de aluminio anodizado
 ④ Pestaña technopolimera
- ⑤ Diafragma rodante
- 6 ENT/SAL terminal fabricado en OT58 latón niquelado o aluminio pasivado para 3/4" - 1"
- 7 Cuerpo regulador technopolimero
- 8 Válvula en latón OT 58 con junta vulcanizada en NBR
- Muelle prensaválvula en acero inox
- Varilla en tecnopolímero
- Juntas OR en NBR
- 1 Tapón en tecnopolímero

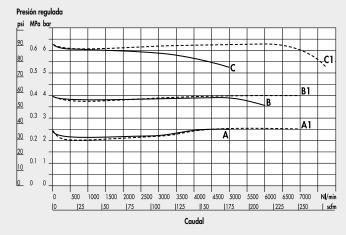


CURVAS DE CAUDAL


REG PIL Syntesi® SY1 1/8"

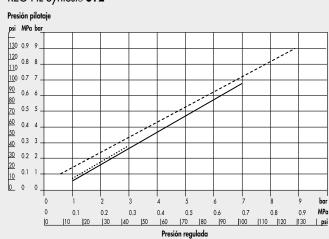

REG PIL Syntesi® SY1 1/4"


REG PIL Syntesi® SY1 3/8"


REG PIL Syntesi® SY2 3/8"

REG PIL Syntesi® SY2 1/2"

REG PIL Syntesi® SY2 3/4" - 1"


A = P In 7 bar - P Out 2.5 bar B = P In 7 bar - P Out 4 bar C = P In 7 bar - P Out 6.3 bar

 $A1 = P \ln 10 \text{ bar - } P \text{ Out } 2.5 \text{ bar } B1 = P \ln 10 \text{ bar - } P \text{ Out } 4 \text{ bar } C1 = P \ln 10 \text{ bar - } P \text{ Out } 6.3 \text{ bar }$

CURVAS DE PILOTAJE

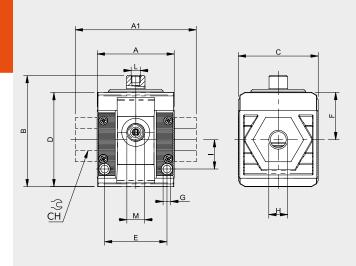
REG PIL Syntesi® **SY2**

..... P In 4 bar

|30

_____ P In 7 bar

[100 [110 [120 [130


0.5

Presión regulada

J70 J80 J90

----- P In 10 bar

DIMENSIONES

		TAMAÑO	1		TAMA	NÑO 2	
H (parte roscada)	1/8"	1/4"	3/8"	3/8"	1/2"	3/4"	1″
A		42			60	0.5	
A1	-	-	44	-	-	95	95
В		63			8	31	
С		44			6	51	
CH		-		-	-	32	36
D		51.5			70	0.5	
E		33.5			47	7.5	
F		25.8			38	3.2	
G	Agujer	o para to	rnillos M4	Agu	jero par	a tornillo	s M5
I		16			22	2.5	
L (pilotaje)		M5			M	15	
M (conexión manómetro		1/8"			1/	4"	
o toma de aire suplementaria)							

CLAVE DE CODIFICACIÓN

56	1	1	R	00	1
SYNTESI	TAMAÑO	ACOPLAMIENTO ROSCADO EN ENTRADA	ELEMENTO	RANGO DE REGULACIÓN	ACOPLAMIENTO ROSCADO EN SALIDA
56 Syntesi 5X Syntesi anticorrosión	1 Tamaño 1 2 Tamaño 2	O Sin casquillo 1 Acoplamiento 1/8" 2 Acoplamiento 1/4" 3 Acoplamiento 3/8" O Sin casquillo 3 Acoplamiento 3/8" 4 Acoplamiento 1/2" 5 Acoplamiento 3/4" 6 Acoplamiento 1"	R Regulador	00 Pilotabile	O Sin casquillo 1 Acoplamiento 1/8" 2 Acoplamiento 1/4" 3 Acoplamiento 3/8" O Sin casquillo 3 Acoplamiento 3/8" 4 Acoplamiento 1/2" 5 Acoplamiento 3/4" 6 Acoplamiento 1"

	de los codidos mencionados piledos p	edir elementos a tu valu	ntad de acuerdo a las claves de codific	ación	
'					
Código	Referencia	Código	Referencia	NOTA	
EGULADOR P	ILOTABLE Syntesi _® SY1	REGULADOR	PILOTABLE Syntesi® SY2	Versión antico	rrosión
610R000	REG PIL SY1 sin terminales	5620R000	REG PIL SY2 sin terminales	5 <mark>X</mark>	
611R001	REG PIL SY1 1/8	5623R003	REG PIL SY2 3/8	Esempio	
612R002	REG PIL SY1 1/4	5624R004	REG PIL SY2 1/2	5X11R001	REG PIL SY1 1/8 anticorrosión
613R003	REG PIL SY1 3/8	5625R005	REG PIL SY2 3/4		
		5626R006	REG PIL SY2 1		
		3020K000	REO I IE 312 I		
OTE					
_					